Skip to content

Auto Scaling Guide

This guide provides comprehensive information on implementing auto scaling for ZeroTrustKerberosLink to ensure optimal performance, cost efficiency, and high availability under varying load conditions.

Overview

Auto scaling allows ZeroTrustKerberosLink to automatically adjust the number of instances based on current demand, ensuring optimal performance during peak times and cost efficiency during periods of low demand.

Auto Scaling Architecture

Basic Auto Scaling Architecture

                          ┌─────────────────┐
                          │                 │
                          │  Load Balancer  │
                          │                 │
                          └────────┬────────┘
                                   │
                 ┌─────────────────┼─────────────────┐
                 │                 │                 │
        ┌────────▼─────┐  ┌────────▼─────┐  ┌────────▼─────┐
        │              │  │              │  │              │
        │ ZeroTrust    │  │ ZeroTrust    │  │ ZeroTrust    │
        │ Instance 1   │  │ Instance 2   │  │ Instance 3   │
        │              │  │              │  │              │
        └──────────────┘  └──────────────┘  └──────────────┘
                 ▲                 ▲                 ▲
                 │                 │                 │
                 └─────────────────┼─────────────────┘
                                   │
                          ┌────────▼────────┐
                          │                 │
                          │  Auto Scaling   │
                          │  Controller     │
                          │                 │
                          └─────────────────┘

Auto Scaling Implementation

AWS Auto Scaling

For AWS deployments, use AWS Auto Scaling:

auto_scaling:
  provider: "aws"
  aws:
    min_instances: 2
    max_instances: 10
    desired_capacity: 3
    cooldown_period: 300  # seconds
    health_check_grace_period: 120  # seconds
    health_check_type: "ELB"  # EC2 or ELB
    termination_policies:
      - "OldestInstance"
      - "Default"

Kubernetes Horizontal Pod Autoscaler

For Kubernetes deployments, use Horizontal Pod Autoscaler:

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: zerotrustkerberos
  namespace: zerotrustkerberos
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: zerotrustkerberos
  minReplicas: 2
  maxReplicas: 10
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 80
  behavior:
    scaleDown:
      stabilizationWindowSeconds: 300
    scaleUp:
      stabilizationWindowSeconds: 60

Docker Swarm

For Docker Swarm deployments:

version: '3.8'
services:
  zerotrustkerberos:
    image: zerotrustkerberos:latest
    deploy:
      replicas: 3
      update_config:
        parallelism: 1
        delay: 10s
        order: start-first
      restart_policy:
        condition: any
        delay: 5s
        max_attempts: 3
        window: 120s
      resources:
        limits:
          cpus: '0.5'
          memory: 1G
      mode: replicated
      placement:
        constraints:
          - node.role == worker
      autoscaling:
        min_replicas: 2
        max_replicas: 10
        cpu_percentage: 70

Scaling Metrics

Configure which metrics trigger scaling actions:

CPU-Based Scaling

auto_scaling:
  metrics:
    cpu:
      enabled: true
      target_utilization: 70  # percentage
      scale_out_threshold: 80
      scale_in_threshold: 60

Memory-Based Scaling

auto_scaling:
  metrics:
    memory:
      enabled: true
      target_utilization: 80  # percentage
      scale_out_threshold: 85
      scale_in_threshold: 70

Request Rate Scaling

auto_scaling:
  metrics:
    request_rate:
      enabled: true
      target_requests_per_second: 100
      scale_out_threshold: 120
      scale_in_threshold: 80

Custom Metrics

auto_scaling:
  metrics:
    custom:
      - name: "authentication_rate"
        target_value: 50
        scale_out_threshold: 60
        scale_in_threshold: 40

Scaling Policies

Configure how scaling actions are performed:

Step Scaling

auto_scaling:
  policies:
    step_scaling:
      enabled: true
      scale_out_steps:
        - threshold: 70
          adjustment: 1
        - threshold: 85
          adjustment: 2
        - threshold: 95
          adjustment: 3
      scale_in_steps:
        - threshold: 40
          adjustment: -1
        - threshold: 25
          adjustment: -2

Target Tracking

auto_scaling:
  policies:
    target_tracking:
      enabled: true
      target_value: 70
      scale_out_cooldown: 300
      scale_in_cooldown: 300

Scheduled Scaling

auto_scaling:
  policies:
    scheduled:
      - name: "business-hours"
        schedule: "0 8 * * 1-5"  # 8 AM Monday-Friday
        min_instances: 5
        max_instances: 10
      - name: "off-hours"
        schedule: "0 18 * * 1-5"  # 6 PM Monday-Friday
        min_instances: 2
        max_instances: 5

Instance Lifecycle Management

Configure how instances are managed during scaling events:

Instance Warm-Up

auto_scaling:
  instance_lifecycle:
    warm_up_period: 120  # seconds
    pre_warm_instances: 1

Graceful Termination

auto_scaling:
  instance_lifecycle:
    termination_grace_period: 60  # seconds
    drain_connections: true

Stateless Design Considerations

To support auto scaling, ZeroTrustKerberosLink must be designed to be stateless:

  1. Session Management: Store sessions in Redis rather than in-memory
  2. Configuration: Use centralized configuration management
  3. Caching: Use distributed caching with Redis
  4. Logging: Send logs to a centralized logging system

Security Considerations

When implementing auto scaling, follow these best practices:

Secure Instance Initialization

Ensure that new instances are securely initialized with appropriate configurations and secrets.

Immutable Infrastructure

Use immutable infrastructure patterns to ensure consistent and secure deployments.

Instance Hardening

Apply security hardening to all instances in the auto scaling group.

Secure Termination

Implement secure instance termination procedures to prevent data leakage.

Monitoring and Alerting

Implement monitoring and alerting for auto scaling events to detect potential issues.

Monitoring Auto Scaling

ZeroTrustKerberosLink provides metrics for monitoring auto scaling:

  • Instance Count: Current number of instances
  • Scaling Events: Number of scale-out and scale-in events
  • Resource Utilization: CPU, memory, and other resource utilization
  • Request Rate: Number of requests per second
  • Response Time: Average response time

These metrics are available through the monitoring endpoints. See the Monitoring Guide for details.

Troubleshooting

Common auto scaling issues include:

Issue Possible Causes Resolution
Instances not scaling out Incorrect scaling thresholds, resource constraints Adjust scaling thresholds, check resource limits
Instances not scaling in Incorrect scaling thresholds, minimum instance count Adjust scaling thresholds, check minimum instance count
Frequent scaling events Threshold too close to target, insufficient cooldown Adjust thresholds, increase cooldown period
New instances failing health checks Configuration issues, application errors Check instance configuration, review application logs
Uneven load distribution Load balancer configuration, session stickiness Adjust load balancer configuration, disable session stickiness