Auto Scaling Guide¶
This guide provides comprehensive information on implementing auto scaling for ZeroTrustKerberosLink to ensure optimal performance, cost efficiency, and high availability under varying load conditions.
Overview¶
Auto scaling allows ZeroTrustKerberosLink to automatically adjust the number of instances based on current demand, ensuring optimal performance during peak times and cost efficiency during periods of low demand.
Auto Scaling Architecture¶
Basic Auto Scaling Architecture¶
┌─────────────────┐
│ │
│ Load Balancer │
│ │
└────────┬────────┘
│
┌─────────────────┼─────────────────┐
│ │ │
┌────────▼─────┐ ┌────────▼─────┐ ┌────────▼─────┐
│ │ │ │ │ │
│ ZeroTrust │ │ ZeroTrust │ │ ZeroTrust │
│ Instance 1 │ │ Instance 2 │ │ Instance 3 │
│ │ │ │ │ │
└──────────────┘ └──────────────┘ └──────────────┘
▲ ▲ ▲
│ │ │
└─────────────────┼─────────────────┘
│
┌────────▼────────┐
│ │
│ Auto Scaling │
│ Controller │
│ │
└─────────────────┘
Auto Scaling Implementation¶
AWS Auto Scaling¶
For AWS deployments, use AWS Auto Scaling:
auto_scaling:
provider: "aws"
aws:
min_instances: 2
max_instances: 10
desired_capacity: 3
cooldown_period: 300 # seconds
health_check_grace_period: 120 # seconds
health_check_type: "ELB" # EC2 or ELB
termination_policies:
- "OldestInstance"
- "Default"
Kubernetes Horizontal Pod Autoscaler¶
For Kubernetes deployments, use Horizontal Pod Autoscaler:
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: zerotrustkerberos
namespace: zerotrustkerberos
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: zerotrustkerberos
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
behavior:
scaleDown:
stabilizationWindowSeconds: 300
scaleUp:
stabilizationWindowSeconds: 60
Docker Swarm¶
For Docker Swarm deployments:
version: '3.8'
services:
zerotrustkerberos:
image: zerotrustkerberos:latest
deploy:
replicas: 3
update_config:
parallelism: 1
delay: 10s
order: start-first
restart_policy:
condition: any
delay: 5s
max_attempts: 3
window: 120s
resources:
limits:
cpus: '0.5'
memory: 1G
mode: replicated
placement:
constraints:
- node.role == worker
autoscaling:
min_replicas: 2
max_replicas: 10
cpu_percentage: 70
Scaling Metrics¶
Configure which metrics trigger scaling actions:
CPU-Based Scaling¶
auto_scaling:
metrics:
cpu:
enabled: true
target_utilization: 70 # percentage
scale_out_threshold: 80
scale_in_threshold: 60
Memory-Based Scaling¶
auto_scaling:
metrics:
memory:
enabled: true
target_utilization: 80 # percentage
scale_out_threshold: 85
scale_in_threshold: 70
Request Rate Scaling¶
auto_scaling:
metrics:
request_rate:
enabled: true
target_requests_per_second: 100
scale_out_threshold: 120
scale_in_threshold: 80
Custom Metrics¶
auto_scaling:
metrics:
custom:
- name: "authentication_rate"
target_value: 50
scale_out_threshold: 60
scale_in_threshold: 40
Scaling Policies¶
Configure how scaling actions are performed:
Step Scaling¶
auto_scaling:
policies:
step_scaling:
enabled: true
scale_out_steps:
- threshold: 70
adjustment: 1
- threshold: 85
adjustment: 2
- threshold: 95
adjustment: 3
scale_in_steps:
- threshold: 40
adjustment: -1
- threshold: 25
adjustment: -2
Target Tracking¶
auto_scaling:
policies:
target_tracking:
enabled: true
target_value: 70
scale_out_cooldown: 300
scale_in_cooldown: 300
Scheduled Scaling¶
auto_scaling:
policies:
scheduled:
- name: "business-hours"
schedule: "0 8 * * 1-5" # 8 AM Monday-Friday
min_instances: 5
max_instances: 10
- name: "off-hours"
schedule: "0 18 * * 1-5" # 6 PM Monday-Friday
min_instances: 2
max_instances: 5
Instance Lifecycle Management¶
Configure how instances are managed during scaling events:
Instance Warm-Up¶
auto_scaling:
instance_lifecycle:
warm_up_period: 120 # seconds
pre_warm_instances: 1
Graceful Termination¶
auto_scaling:
instance_lifecycle:
termination_grace_period: 60 # seconds
drain_connections: true
Stateless Design Considerations¶
To support auto scaling, ZeroTrustKerberosLink must be designed to be stateless:
- Session Management: Store sessions in Redis rather than in-memory
- Configuration: Use centralized configuration management
- Caching: Use distributed caching with Redis
- Logging: Send logs to a centralized logging system
Security Considerations¶
When implementing auto scaling, follow these best practices:
Secure Instance Initialization
Ensure that new instances are securely initialized with appropriate configurations and secrets.
Immutable Infrastructure
Use immutable infrastructure patterns to ensure consistent and secure deployments.
Instance Hardening
Apply security hardening to all instances in the auto scaling group.
Secure Termination
Implement secure instance termination procedures to prevent data leakage.
Monitoring and Alerting
Implement monitoring and alerting for auto scaling events to detect potential issues.
Monitoring Auto Scaling¶
ZeroTrustKerberosLink provides metrics for monitoring auto scaling:
- Instance Count: Current number of instances
- Scaling Events: Number of scale-out and scale-in events
- Resource Utilization: CPU, memory, and other resource utilization
- Request Rate: Number of requests per second
- Response Time: Average response time
These metrics are available through the monitoring endpoints. See the Monitoring Guide for details.
Troubleshooting¶
Common auto scaling issues include:
Issue | Possible Causes | Resolution |
---|---|---|
Instances not scaling out | Incorrect scaling thresholds, resource constraints | Adjust scaling thresholds, check resource limits |
Instances not scaling in | Incorrect scaling thresholds, minimum instance count | Adjust scaling thresholds, check minimum instance count |
Frequent scaling events | Threshold too close to target, insufficient cooldown | Adjust thresholds, increase cooldown period |
New instances failing health checks | Configuration issues, application errors | Check instance configuration, review application logs |
Uneven load distribution | Load balancer configuration, session stickiness | Adjust load balancer configuration, disable session stickiness |